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Abstract

Methods for causal inference from observational data are common in
human disease epidemiology and social sciences but are used relatively
little in plant pathology. We draw upon an extensive data set of the
incidence of hop plants with powdery mildew (caused by Podosphaera
macularis) collected from yards in Oregon from 2014 to 2017 and associated
metadata on grower cultural practices, cultivar susceptibility to powdery
mildew, and pesticide application records to understand variation in and
causes of growers’ fungicide use and associated costs. An instrumental
causal forest model identified growers’ spring pruning thoroughness,
cultivar susceptibility to two of the dominant pathogenic races of
P. macularis, network centrality of yards during May–June and June–July
time transitions, and the initial strain of the fungus detected as important
variables determining the number of pesticide active constituents applied
by growers and the associated costs they incurred in response to powdery

mildew. Exposure-response function models fit after covariate weighting
indicated that both the number of pesticide active constituents applied and
their associated costs scaled linearly with the seasonal mean incidence of
plants with powdery mildew. Although the causes of pesticide use intensity
are multifaceted, biological and production factors collectively influence
the incidence of powdery mildew, which has a direct exposure-response
relationship with the number of pesticide active constituents that growers
apply and their costs. Our analyses point to several potential strategies for
reducing pesticide use and costs for management of powdery mildew on
hop. We also highlight the utility of these methods for causal inference in
observational studies.

Keywords: data science, disease control and pest management, epidemiol-
ogy, fungal pathogens

The severity of plant diseases varies in response to numerous
well-known factors related to host susceptibility, the virulence of
the pathogen, and the favorability of the environment. In managed
systems, disease severity also varies in response to a fourth ver-
tex of the disease tetrahedron, control measures applied by humans
(Agrios 2005). When, what, and how often growers apply pesticides
can vary substantially from field to field and farm to farm (Andert
et al. 2015; Jørgensen et al. 2017; Marsh et al. 2000; Nicholson and
Williams 2021; Oakley et al. 2007). Identifying variates that explain
and predict outcomes of production systems such as disease sever-
ity and pesticide use can provide insights into the individual risk
factors or suites of factors underlying the efficiency of entire produc-
tion systems. These factors could be related to variation in cultural
practices, regional differences due to climate or crop diversity, crop
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value, or grower risk avoidance (Gent et al. 2012; Jørgensen et al.
2017; Lybbert et al. 2016; Mourtzinis et al. 2018, 2019; Nicholson
and Williams 2021; Savary et al. 2000).

Our motivating pathosystem for this research is the disease pow-
dery mildew of hop, caused by the fungus Podosphaera macularis.
Hop (Humulus lupulus) is a long-living herbaceous perennial that is
produced for its strobiles, colloquially referred to as cones or simply
hops (Neve 1991). Powdery mildew is one of the most damaging and
costly diseases for hop producers in the Western United States. This
is in part because of the long period during the growing season when
the disease must be managed, the rapid annual growth of the host,
and market factors that prioritize brewing attributes over agronomic
factors such as disease resistance (Gent et al. 2008; Mahaffee et al.
2009). Presently in the Western United States, P. macularis persists
in hop yards in association with infected crown buds because one of
the two mating types necessary for formation of ascocarps is absent
from the region (Weldon et al. 2021a, b; Wolfenbarger et al. 2015).
Bud infection may lead to shoots emerging from winter dormancy
colonized by P. macularis, the so-called flag shoots (Gent et al.
2018). Bud perennation leading to flag shoot development is a rare
event that occurs, on average, in approximately 6% of hop yards
in Oregon (Laurie et al. 2023). From these primary infections, the
pathogen is readily disseminated by wind within and between hop
yards to infect leaves, stems, and other photosynthetic tissue. The
spread of powdery mildew between hop yards can be conceptual-
ized as a directed network at the landscape level, with each hop yard
representing a node and edge weight representing the probability
of disease transmission due to spread from other nodes (Gent et al.
2019a). Disease spread among yards is influenced by the source
strength of the inoculum in affected yards, host susceptibility to the
pathogen, distance from a source, and wind run (Gent et al. 2019a).
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Conidia produced from foliar infections provide the inoculum
for later infection of cones that begin to form just after the sum-
mer solstice (Royle 1978; Twomey et al. 2015). Cultural practices
such as removal of the first flush of shoots (referred to as prun-
ing), elimination of superfluous basal foliage, and moderation of
nitrogen fertility delay disease onset or reduce epidemic velocity
(Gent et al. 2012, 2016, 2019b, 2024; Probst et al. 2016; Royle
1978). Resistance to powdery mildew is available in certain cultivars
(Mahaffee et al. 2009), but in many instances, host resistance has
been short-lived when a given form of resistance is broadly deployed
on the landscape (Block et al. 2021; Gent et al. 2017; Wolfenbarger
et al. 2016). Resistance often is not available in cultivars demanded
by brewers or markets. Consequently, regular applications of fungi-
cides are required to suppress powdery mildew to maintain both
hop yield and quality (Gent et al. 2014; Nelson et al. 2015; Royle
1978).

In 2010, hop producers in Oregon reported making on average 5.1
fungicide applications per year for powdery mildew in susceptible
cultivars (Sherman and Gent 2014). There is not a single preferred
fungicide program used by hop producers in the Western United
States for powdery mildew (Sherman and Gent 2014). Rather, fungi-
cide use intensity may vary among individual hop yards based on
the susceptibility of given cultivar (Sherman and Gent 2014), cul-
tural practices such as the thoroughness of spring pruning (Gent
et al. 2012), and the presence of an overwintered inoculum (Gent
et al. 2019b), among other factors. Representing only the popula-
tion mean fungicide use intensity may obscure important treatment
heterogeneity between yards or farms. Indeed, analysis of pesticide
use intensity and patterns in other pathosystems typically reveals
treatment heterogeneity that can illuminate practices or factors as-
sociated with more or less intensive pesticide use patterns (Andert
et al. 2015; Lybbert et al. 2016; Nicholson and Williams 2021;
Oakley et al. 2007).

There are several potential methods to understand how a complex
suite of variates may influence disease development and, in turn,
pesticide use by growers. For establishing causality, randomized
control trials conducted over space and time could experimentally
deduce the effect of common production practices on disease de-
velopment and grower responses. Randomized control trials are
commonly considered the gold standard for establishing cause-and-
effect relationships (Hariton and Locascio 2018), but often, they
are too costly to conduct because crop production systems are in-
credibly diverse and the number of potential factors of interest is
impractical to assess in more than just a few combinations. Random-
ized control trials also suffer from external validity issues (Rothwell
2005). That is, conclusions from one experiment may not be gen-
eralizable to other situations because of differences in factors such
as microclimate, management conditions, or other covariates. Some
factors are also impossible to vary because of ethical considerations
with human subjects or practical constraints. As an alternative to
randomized control trials, process-based or agent-base models that
simulate all aspects of disease development and grower responses
to disease are useful tools for gaining insights into complex system
behavior (Atallah et al. 2012; Babcock et al. 2022; Cunniffe et al.
2016; Murray-Watson et al. 2022). However, these models require
many decisions and assumptions on what variables to include and
the functional forms of relationships among variables. Data acqui-
sition costs for their development and use may be cost prohibitive.
Because of these limitations, analyses of large, observational data
sets are common in ecology, the social sciences, and epidemiology.
Numerous data-driven methods are available (Pichler and Hartig
2023).

There is rich and extensive literature in the social sciences on nat-
ural experiments or quasi-experiments that apply the Rubin casual
model to observational data, which can be applied in an asso-
ciational or causal inference framework. These methods are not
without limitations when attempting to understand cause-and-effect
relationships because of potential confounding from observed or

unobserved variables (Athey and Wager 2019). In observational
studies, in which the treatment assignment was out of the control of
the investigator, much of the epidemiological literature assumes that
the assignment of a treatment might be ignorable after controlling
for potential confounders (Little and Rubin 2000). Observational
causal inference methods usually start from a baseline observational
model and then build on the treatment effect estimation framework
under the auspices of the baseline model. In this paper, we start with
a predictive model based on random forests (Breiman 2001).

Random forests are a widely used algorithm for supervised statis-
tical learning that have found increasing application in plant disease
contexts (Domingues et al. 2022; Shah et al. 2023). Random forest
models are an ensemble method that generalize numerous indi-
vidual regression trees for conditional mean estimation (Breiman
2001). Individual trees have low bias but high variance, which limits
their out-of-sample prediction. The random forest method reduces
variance through drawing bootstrap samples from a data set to fit
an unpruned regression tree for each respective bootstrap sample.
The variable selection for each split in a random forest is conducted
from a small, random subset of independent variables to avoid both
the path dependency problem and the “small n large p” or high-
dimensionality problem (Strobl et al. 2007). From the final node,
the response variable is predicted as an average or majority vote of
the predictions of the ensemble of pruned trees. The random forest
algorithm for regression trees uses mean squared error (MSE) to
determine how the data branches from each node:

MSE = 1

N

N∑

i=1

( fi − yi )
2

where N is the number of observations, fi is the value returned
by the model, and yi is the actual value for each observation. Ran-
dom forest models are attractive for prediction problems with large,
high-dimensional data sets because of their flexibility for handling
multiple forms of data, robustness to outliers, and few hyperpa-
rameters. A random forest is a stepwise linear approximation that
provides a global understanding of a treatment effect averaged over
the entire sample population; the algorithm does not estimate het-
erogeneity in covariates (treatment heterogeneity), which may mask
variability within subpopulations.

Generalized random forests are an extension of random forests
built on local moment conditions that seeks to estimate heteroge-
neous treatment effects for causal inference (Athey et al. 2019).
Instead of making a prediction of the outcome itself, generalized
random forests enable prediction of a treatment effect of a specific
covariate (subgroup) on a response variable. This is powerful for
understanding how a predictor variable interacts with contextual co-
variates, for example, biophysical or management-related factors.
Generalized random forests first calculate a causal regression tree
from a low-dimensional representation of treatment effect hetero-
geneity (with respect to observable covariates) based on recursive
partitioning and sampling without replacement to estimate the con-
ditional average treatment effect (CATE). A subset of observations
J are randomly drawn from N number of observations, and J is par-
titioned into two sets: J1 to build trees that maximize the variance
of CATE estimation in a leaf and J2 to analyze the CATE. While
building a tree, the m subset of covariates is utilized to split the
observations to maximize heterogeneity in subgroups. For unit i let
Yi be the outcome and Ti be the treatment, then an estimate of the
heterogeneous treatment effect τ̂ can be conducted in the presence
of confounding variables as follows (Nie and Wager 2021):

τ̂ =
∑

i ai (x) (Yi − m̂(−i)(Xi ))(Ti − ê(−i) (Xi ))
∑

i ai (x)
(
Ti − ê(−i) (Xi )

)2

where ai(x) is a data-adaptive kernel that weights how often a
unit i in training has fallen into the same leaf conditional on co-
variates x, m̂(−i) is the out-of-sample prediction of a conditional
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outcome m(x) = E[Yi|Xi = x], and ê(−i) is the conditional probabil-
ity of being treated e(x) = E[Ti|Xi = x] (Athey and Wager 2019).
In brief, the generalized random forest algorithm first estimates
ê(Xi ) and m̂(Xi ) separately, along with a bootstrap-aggregated (out-
of-bag) prediction. A residual treatment Ti − ê(−i)(Xi ) and outcome
Yi − m̂(−i)(Xi ) are computed, and the generalized random forests
are trained on these residuals (Athey and Imbens 2019).

Generalized random forests can be implemented using an in-
strumental variable to resolve inherent endogeneity or induced
endogeneity of measurement error. An instrumental variable is a
proxy correlated with a predictor variable conditionally on other
covariates but conditionally uncorrelated with a response variable.
An instrumental variable produces more stable and unbiased results
when an explanatory variable is correlated with the residuals due
to confounding from unobserved covariates, non-random measure-
ment error, or when a response variable may change the value of
an explanatory variable (Greene 2018). In an instrumental forest,
the conditional local average treatment effect, τ, is identified using
instruments. Therefore, the instrumental forest is followed as

(τ) = Cov[Y, Z|X = x]

Cov[W, Z|X = x]

where W is treatment and Z is the instrument (Tibshirani et al. 2023).
We are unfamiliar with application of generalized random forests
or instrumental forests in plant disease epidemiology.

In this research, we draw upon an extensive data set of the in-
cidence of hop powdery mildew collected in a census sample of
commercial hop yards in Oregon from 2014 to 2017 and associated
metadata on certain grower cultural practices, cultivar susceptibil-
ity to powdery mildew, and pesticide application records (Gent
et al. 2019a). Our overall objectives were to summarize variation
in growers’ fungicide use and the associated cost of their fungi-
cide programs in response to powdery mildew. We do this through
fitting generalized random forests to predict fungicide use inten-
sity and the associated costs of the fungicide programs. We then
estimate heterogeneous treatment effects to understand factors re-
lated to variation in fungicide use intensity and its costs. We also
confirmed the findings by fitting an exposure-response model on a
covariate-weighted data set to quantify how fungicide use and costs
change with exposure to powdery mildew.

Materials and Methods
Description of disease assessment and data set

A full description of the disease assessment methods and data is
presented in Gent et al. (2019a), so we provide only an abbreviated
summary here. In each year from 2014 to 2017, a census sample of
the incidence of hop plants with powdery mildew was conducted
monthly from April to July by sampling every hop yard on every hop
farm in the eastern extent of the hop production region in Oregon.
There were 8 to 10 farms sampled per year, spanning from near the
cities of Silverton to Hubbard (maximum distance between yards
of 26 km). In total, data were available for 103 yards assessed in
2014, 118 in 2015, 112 in 2016, and 125 in 2017. As this was a
census sample, all cultivars were evaluated independent of their
susceptibility to powdery mildew. The cultivars evaluated and their
relative susceptibility to powdery mildew are detailed in Laurie et al.
(2023).

The incidence of plants with powdery mildew was assessed using
a modification of cluster sampling methods described previously
(Turechek and Mahaffee 2004; Turechek et al. 2001). Each yard
was divided into strata of 20 rows, and at least two strata per yard
were sampled by evaluating 50 to 200 hills (referred to hereafter
as plants) in one transect (row) per strata. The number of plants
harboring a flag shoot or colonies of P. macularis was recorded,
the former nearly always occurring during sampling in April
and May.

Potential covariates were recorded during the time of disease as-
sessments, after consultation with the cooperating growers, derived
from literature or other sources, or calculated, as we describe be-
low. These were generally related to host susceptibility to powdery
mildew, the race (strain) of the pathogen present in a yard, vari-
ous network centrality measures, selected cultural practices, and
physical location of yards.

We assigned each cultivar an ordinal score for its susceptibil-
ity to two pathogenic races of P. macularis as described in Laurie
et al. (2023). For background, in the Pacific Northwestern United
States, there are three dominant pathogenic races of P. macularis
that display differential host genotype adaptation (Gent et al. 2017;
Wolfenbarger et al. 2016). Two of the three races were relevant at the
time of our study, namely strains virulent to hop cultivars possessing
the R-genes Rb, R3, or R5 (race Vb,V3,V5) and strains virulent on
cultivars possessing Rb, R3, R4, R5, or R6 (race Vb,V3,V4,V5,V6)
(Wolfenbarger et al. 2016). For brevity, we refer to race Vb,V3,V5
as non-V6 virulent and race Vb,V3,V4,V5,V6 as V6-virulent be-
cause a defining difference between these races is their ability to
cause disease on the widely deployed powdery mildew resistance
dubbed R6 (Henning et al. 2011; Wolfenbarger et al. 2016).

The initial strain of P. macularis present in each hop yard was
determined as being virulent or not on cultivars possessing R6, as
described previously (Gent et al. 2019a). In 13 instances, we could
not obtain isolates or virulence data. In these instances, or when
powdery mildew did not occur at any level, we coded the initial
strain as 0. Otherwise, we coded the initial strain as 1 if the pathogen
was non-V6-virulent and 2 if the pathogen was V6-virulent.

The thoroughness of spring pruning was rated using a 1-to-5
ordinal scale, as described previously (Laurie et al. 2023). Spring
pruning is potentially relevant for powdery mildew development
and pesticide use intensity because this practice can remove the
overwintered inoculum associated with flag shoots and delay de-
velopment of the disease (Gent et al. 2012, 2019b; Laurie et al.
2023; Probst et al. 2016; Turechek et al. 2001). In this ordinal scale,
1 represents the most thorough pruning, which removed all green
leaves and stems from every plant. Each subsequent point represents
an approximation of the incidence of plants with green foliage re-
maining, such that a 5 indicates that more than 80% of plants had
green leaves and shoots remaining after pruning.

The centrality of each hop yard in the inferred disease spreading
network was expressed using the outward degree centrality statistics
reported in Gent et al. (2019a). The outward degree centrality of the
ith node is the number of outward-directed edges stemming from
that node:

dk =
∑

i

1 {(k, i) ∈ E}

where outward degree centrality is summed on the edges from k to i
on edge set E. Outward degree centrality was calculated for monthly
time transitions from May to June and June to July for each network
of yards affected by V6-virulent or non-V6-virulent strains planted
to cultivars that possess R6 and those that do not. For each network
and month, degree centrality was dichotomized depending on
whether the statistic was non-zero. We also calculated the midpoint
between the centroid of all yards and divided the landscape into four
equidistant quadrants from the central reference point to investigate
whether general position in the landscape influenced pesticide use
and costs.

Lastly, we assigned a dummy variable to each grower and year.
One grower had two hop yards that were produced in only 2017. We
removed data for this grower given the small sample size. Summed
over the 4 years represented in the data set, the number of yards for
the other growers ranged from 21 to 103, with a mean of 51.

Descriptive statistics for pesticide use intensity and costs
We used the total number of fungicide active constituents applied

by growers in a given year and their estimated costs as the response
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variables in our analyses. We obtained pesticide application records
from each grower for all yards sampled, digitized their records, and
then tallied the number of active constituents applied per hectare
with activity against powdery mildew. The 17 active constituents
in 22 products we identified in the pesticide application records are
given in Supplementary Table S1. Some subjectivity was involved in
determining whether to consider certain pesticides and adjuvants as
powdery mildew fungicides. For instance, some adjuvants may have
some activity against powdery mildew diseases (Jibrin et al. 2021)
even though they are typically not used specifically for powdery
mildew suppression. We did not consider adjuvants in our tally be-
cause it would have artificially inflated the tallies because adjuvants
are used with most pesticides and because most adjuvants have not
been evaluated for suppression of powdery mildew diseases. As an
exception to this rule, we did consider various mineral oils as active
constituents for powdery mildew even though they may be used as
general adjuvants because mineral oils have well-documented ac-
tivity against powdery mildew and, in our experience, are routinely
used specifically for powdery mildew suppression (Claassen et al.
2022). Similarly, we included copper-based fungicides in our tallies
because these are recommended for powdery mildew suppression
(Royle 1978), even though they are often applied for suppression
of other diseases as well. For all pesticides, we considered only the
number of active constituents (Essling et al. 2021) and not the dose
or dose equivalency applied.

To estimate the annual costs of the powdery mildew fungicides,
we requested price quotes for the pesticides from each of three ven-
dors in western Oregon that service hop producers. Quotes were
obtained from each vendor during October and November 2021
that reflected nominal prices for 2014 to 2022, where available. We
estimated real prices using January 2022 as the base by adjusting
the nominal price by the U.S. Bureau of Labor Statistics producer
price index for farm products for each year, and then averaged over
all available years to derive a single real price per unit. In some
instances, a given mineral oil or sulfur-based product was a pro-
prietary formulation only available from one source, so averaging
across the three vendors was not possible. In these situations, we
used the price quote from the sole source that carried it or, if none of
the three vendors carried a product found in the pesticide records,
we substituted an equivalent product.

Random forest model
We used the Python 3.10 Scikit-learn tools (Pedregosa et al. 2011)

to fit and optimize a random forest through hyperparameter tuning.
We trained on 80% of the data set and tested 20%, testing several
thousand combinations of settings while growing the trees. We eval-
uated the performance of a random forest using mean absolute error
(MAE), MSE, root mean squared error, and the coefficient of deter-
mination (R2) in the training data sets, test data set, and validation
data sets based on leave-one-out cross-validation.

As a check on the prediction accuracy of the random forest,
we applied three other machine learning methods to the data set
for comparison: ridge regression, LASSO (least absolute shrinkage
and selection operator) regression, and a decision tree (Pichler and
Hartig 2023). Ridge regression is an extension of linear regression
that is more stable in the presence of multicollinearity that uses a
modified loss function. Ridge regression can control overfitting and
underfitting by a parameter and reduce variance in parameter esti-
mates. LASSO regression is a regularization technique that applies
a modified loss function to obtain a more accurate prediction us-
ing shrinkage, which allows estimated coefficient parameter values
to shrink toward zero. A decision tree is a single model algorithm,
which continues to split the data until it reaches a point where it can-
not improve predictions. We again calculated mean absolute error,
MSE, root mean squared error, and the R2 for each of the training
data, test data, and in cross-validation to measure in- and out-of-
sample model performance and prediction, similarly to the random
forest.

Generalized random forest
One of our aims was to examine heterogeneous treatment effects

associated with the presence of powdery mildew for the number of
pesticide active constituents applied and the annual cost of pesti-
cides. We constructed histograms of conditional average treatment
effects for the two response variables as a diagnostic to detect poten-
tial heterogeneity. Based on the approximately normal distribution
of pesticide use intensity and costs, we suspected heterogeneity
existed among potential subpopulations in the data set (Fig. 1).

We implemented an instrumental forest model using the inci-
dence of powdery mildew in May as an instrumental variable for
the seasonal mean incidence of plants with powdery mildew. We
used this instrumental variable because the seasonal mean inci-
dence of plants with powdery mildew is potentially related to the
residuals, as growers that apply more or less pesticides for pow-
dery mildew may in turn modify the seasonal mean incidence of
plants with powdery mildew. We reasoned that the incidence of
plants with powdery mildew in May could be a suitable instrument
for the seasonal mean incidence of plants with powdery mildew for
two primary reasons. First, the seasonal mean incidence of powdery
mildew is correlated with primary inoculum dose and disease de-
velopment in the earliest stages of the epidemic (Gent et al. 2019b;
Turechek et al. 2001). Second, the incidence of plants with powdery
mildew in May is correlated with this mean incidence of plants with
powdery mildew over the season but is less strongly correlated with
the response variables (Supplementary Fig. S1). We also considered
other potential instruments, such as the incidence of plants with flag
shoots. We used the incidence of plants with powdery mildew in
May instead of flag shoots because most observations for flag shoots
were zero.

With strong instruments, two-stage least squares and limited
information maximum likelihood estimators are asymptotically un-
biased. However, weak instruments can bias point estimates and
distort test sizes (Nelson and Startz 1990). We tested whether the
incidence of plants with powdery mildew in May was a weak in-
strument. Stock and Yogo (2005) suggest a robust test for weak
instruments under the assumption of conditionally homoscedastic,
serially uncorrelated model errors. The test rejects the null hypoth-
esis of weak instruments when the critical value exceeds a given
threshold. We used the STATA ‘weakivtest’ critical values for the
null hypothesis that the two-stage least squares asymptotic bias ex-
ceeds 10% of a fraction τ of worst-case bias (Olea and Pflueger
2013). After establishing that the incidence of plants in May was
not a weak instrument, we proceeded to fit the causal forest with
this instrument.

Each hop yard was indexed by i = 1, 2,…, N, and a vector of
the covariates. The incidence of powdery mildew as a treatment is
indicated as a continuous variable Ti ∈ {0, 0.6}, representing the
observed range of disease incidence. Concretely in our application,
treatment is the seasonal mean incidence of plants with powdery
mildew in a given hop in a given year, which may have a causal effect
on the number of active constituents applied and annual costs in the
population of hop yards. The effect of powdery mildew occurrence
on these response variables may be heterogeneous depending on
various covariates, such as cultivar susceptibility to the disease or
position in the landscape. The CATE was estimated as the average
slope in the partial dependence for a continuous treatment variable
(Chernozhukov et al. 2022; Tibshirani et al. 2023):

τ(x) = E [(Cov[W,Y |X ])/(Var[W |X ])]

where W is the continuous treatment variable and X is covariates.
The general tree-specific procedure followed these five steps:

i. Randomly draw a sample of hop yards and a subset of available
covariates

ii. Randomly split the sample in half, creating a training set and an
estimation set

iii. Use the training set to grow a tree
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iv. Match hop yards in the estimation set to leaves of the tree
according to the observed covariates

v. Estimate average treatment effects from observations deter-
mined by the final partition, and then estimate for each leaf
or observation based on the associated observed covariates

For each of 2,000 trees, we predicted the average marginal treat-
ment effect on pesticide use intensity or annual costs for all hop
yards not used in growing the specific tree in step i above. Each of
these predictions was aggregated into a single estimate of CATE
for the number of active constituents or annual costs. We used an
“honest” estimation approach based on recursive partitioning and
subsampling to estimate CATE, as described in Athey and Imbens
(2016). We excluded estimates of CATE for the cases when the ini-
tial strain was assigned a value of 0 or when the outward degree
centrality variables were 0 because powdery mildew essentially did
not occur in these categories. Thus, these variables might cause con-
founding bias with powdery mildew occurrence due to the nature of
the covariates. Analyses were conducted using the default settings
in the R package grf for an instrumental forest with a continuous
treatment (Tibshirani et al. 2023). The number of variables during
each split was

√
p +20, where p is the number of variables con-

sidered during each split. The minimum number of observations in
each tree leaf was 5. Each unit was given the same weight. Variable
importance was calculated as the weighted sum of how many times
a feature i was split on at each depth in the forest.

Covariate balancing and exposure-response function
To complement the analysis above, we further examined covari-

ate balancing and estimated an exposure-response function. An
important assumption for establishing a causal effect is that there
must be no other confounders present that could have their own
causal effect (Pearl 2010). One means to test this assumption is
through calculation of a propensity score. A propensity score is
the conditional probability of assignment to a treatment given a
set of covariates, and this score is used to assure treatment and
control groups have similar covariates when making causal in-

ference (Rosenbaum and Rubin 1983). Given a propensity score,
treatment effects can be estimated by appropriately matching co-
variates to reduce confounding through weighting, stratification, or
adjustment of the propensity score. Propensity score approaches are
well developed for binary treatments (Austin 2011), but statistical
methodology is just now being developed to calculate propensity
scores for treatments with continuous effect, such as exposure to
disease in our data set (Khoshnevis et al. 2023).

Given the potential for confounding among the covariates in the
instrumental forest we described above, we calculated a generalized
propensity score and fit an exposure-response function as a further
check on the instrumental forest analysis. The generalized propen-
sity score is defined as the conditional density of the treatment level
given confounders for a continuous treatment. The causal infer-
ence of a continuous exposure can be examined using generalized
propensity scores for removing selection bias. The average causal
exposure-response function is defined as the specific range of the
exposure levels wi ∈ W and is followed as

μ(w) = E [Yi (w)]

= lim
δ→0

E [E{Y obs
i |e(Wi,Ci ),Wi ∈ [w − δ, w + δ]}]

where Ci represents the pre-exposure covariates for unit i, and δ
is a constant for a given data set with sample size N. To esti-
mate a generalized propensity score for this model, we first gen-
erated a pseudo-population by weighted observations to reduce
pre-exposure covariate confounding across different levels of dis-
ease incidence, our exposure variable. We conducted a covariate
balance test to assess how well the weighting balanced the covariates
in the pseudo-population. The covariate balance test measures the
absolute correlations between the exposure (mean seasonal disease
incidence) and observed pre-exposure covariates. The correlation
coefficients allow us to investigate how closely the distribution of
observed pre-exposure covariates aligns across all levels of expo-
sure (Khoshnevis et al. 2023). Second, we calculated generalized
propensity scores using conditional density estimation to visualize

Fig. 1. Histogram of conditional average treatment effect estimates for annual cost (left) and the number of pesticide active constituents (right) applied for suppression
of powdery mildew by Oregon hop growers from 2014 to 2017. Median and interquartile range values are respectively 487.97, 408.16 to 537.35 for annual cost and
20.35, 19.60 to 21.34 for active constituents.
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the degree to which we could achieve covariate balance. We used
a nonparametric kernel density based on a local polynomial to es-
timate the conditional density of the outcome variables given the
covariates.

After confirming acceptable covariate balance, we then estimated
the exposure response functions to quantify the effect of disease
incidence on pesticide active constitutes applied and annual costs.
We fit the exposure-response functions as a parametric local-linear
regression model. We conducted these analyses using the R package
CausalGPS (Khoshnevis et al. 2023).

Results
Descriptive statistics for pesticide use intensity and costs

Overall, the seasonal mean incidence of plants with powdery
mildew was 0.03 (standard deviation 0.08) over all yards and years
(Table 1). The mean number of fungicide active constituents applied
for powdery mildew and the associated costs varied somewhat by
year, but among years, there were similar monthly patterns when
growers applied the most pesticides and when they incurred the
most costs (Fig. 2). There were few to no pesticides applied in
March, followed by a general pattern of increasing pesticide use up
to June, and then a progressive decrease in July and August in most
years (Fig. 2B). Whereas the most active constituents were applied
in June, growers incurred the most costs in July or August, reflect-
ing that the average cost per active constituent applied was greater
in these months than in earlier months (Fig. 2A). There were also
yearly trends in pesticide use and their costs, with the mean number
of active constituents applied (independent of the covariates) vary-
ing from 7.86 in 2014 to 8.28 in 2017 (Fig. 2D). Correspondingly,
mean annual costs per hectare varied from as low as $314.58 in 2015
to $587.53 in 2017 (Fig. 2C). Unsurprisingly, the number of active
constituents applied and the associated annual costs were closely
correlated (Spearman’s rank correlation coefficient ρ = 0.73;
Fig. 3).

The number of active constituents applied and annual costs var-
ied depending on whether powdery mildew was present. In yards
where powdery mildew was not detected, growers applied on av-
erage 5.75 fungicide active constituents, whereas growers applied
7.70 active constituents in yards where the disease was detected. In
turn, associated costs for these pesticides were on average $131.49

per hectare more expensive in yards with disease as compared with
those without disease ($516.44 versus $384.95) (Table 1).

For the subset of covariates identified as important in the gen-
eralized random forest model described below, the means of the
powdery mildew treatment subgroups (i.e., powdery mildew present
or not) were significantly different based on t tests, with the excep-
tion of pruning thoroughness (P = 0.963). For reference, we provide
summary statistics in Table 1 for most variables relevant later in the
analysis but point out that treatment means for certain variables are
trivial (e.g., outward degree centrality when powdery mildew was
not present because, by definition, these yards would have outward
degree centrality of 0).

Random forest model
Prediction of the number of active constituents applied, and an-

nual costs were well captured, as measured by MSE and R2, in
out-of-sample test data and cross-validation by the random for-
est model as compared with other machine learning approaches
(Table 2). Given the overall predictive accuracy of a random forest,
our preferred model was a generalized random forest to understand
sources of heterogeneity in outcomes associated with the powdery
mildew status of yards.

Generalized random forest
The effective F statistics of the Montiel-Pflueger robust weak

instrument test were 50.080 and 38.404 for annual cost and pesticide
active constituents, respectively, at a 0.05 significance level (Table
3). For both response variables, the F statistic was greater than the
worst-case bias of two-stage least square and limited information
maximum likelihood. Thus, the instruments were not weak and were
robust to heterogeneity in the data.

The distribution of quartiles of the CATE for active constituents
and costs varied for all of the covariate groups and were particularly
divergent in some case (Supplementary Table S2). For instance,
for annual cost, only 15.11% of the CATE fell in the southeast
quadrant in the lowest quantile, whereas 66.30% of the CATE fell
in this quantile when the hop yards were located in the northeast
quadrant. We also detected relatively large differences in the CATE
distribution depending on cultivar susceptibility to V6 strains of
P. macularis and pruning thoroughness. Qualitatively similar dif-

TABLE 1. Summary statistics and mean comparisons between hop yards where powdery mildew was detected or not for selected variables used in generalized
random forest models

Full sample
Powdery mildew

not detected
Powdery mildew

detected
Variable importanceb

Variablea Mean SD Mean SD Mean SD Difference t test P value
Annual

cost
Active

constituents

Mean incidence of diseased plants (proportion) 0.03 0.08 0.00 0.00 0.08 0.12 0.08 10.29 <0.001 – –
Mean incidence of diseased plants in May

(proportion)
0.0032 0.0254 0.00 0.00 0.01 0.04 0.01 3.06 0.002 – –

Pruning thoroughness (1 to 5) 2.98 1.53 2.99 1.65 2.98 1.38 –0.01 –0.04 0.963 0.186 0.180
Susceptibility to non-V6-virulent strains (0 to 5) 1.84 1.49 1.92 1.44 1.76 1.57 –0.16 –1.08 0.276 0.120 0.152
Susceptibility to V6-virulent strains (0 to 5) 2.73 1.31 2.35 1.36 3.21 1.10 0.86 7.35 <0.001 0.092 0.087
Degree centrality non-R6-cultivars May–June

(count)
1.02 3.46 0.00 0.00 2.26 4.88 2.26 7.35 <0.001 0.124 0.063

Degree centrality non-R6-cultivars June–July
(count)

0.49 1.88 0.00 0.00 1.10 2.69 1.10 6.51 <0.001 0.073 0.071

Initial strain V6-virulent (0/1/2)c 0.72 0.91 0.00 0.00 1.61 0.64 1.61 39.61 <0.001 0.029 0.032
Active constituents (count) 6.63 2.97 5.75 2.85 7.70 2.78 1.95 7.39 <0.001 – –
Annual cost (USD/ha) $444.38 275.9 $384.95 276.89 $516.44 257.57 $131.49 5.21 <0.001 – –
Observations 458 251 207

a Variable descriptions are as described in the Materials and Methods. The form of the data or units is noted parenthetically. Dummy variables associated with the
quadrant of the landscape where yards were located are not presented because the summary statistics are not meaningful.

b Variable importance for selected variables was calculated as the weighted sum of how many times a feature i was split on at each depth in the forest. Dash marks
indicate variable importance is not relevant.

c Means for this variable indicate the proportion of all yards where the initial strain of Podosphaera macularis was detected possessed V6-virulence. In the total of
207 yards where powdery mildew occurred, in 22% of yards, the initial strain was non-V6-virulent, and in 78%, the initial strain was V6-virulent.
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ferences in the CATE distribution were observed for both pesticide
active constituents and annual costs (Supplementary Table S2).

Variables identified as important for the annual costs of pesti-
cides in the causal forest were, in descending order, spring pruning
thoroughness (0.186), degree centrality of yards planted to non-
R6-cultivars during the May–June transition (0.124), susceptibility
to non-V6-virulent strains of the pathogen (0.120), susceptibility
to V6-virulent strains of the pathogen (0.092), degree centrality
of yards planted to non-R6-cultivars during the June–July transi-
tion (0.073), and the initial strain of the pathogen detected (0.029)
(Table 1). Similarly, the most important variables associated with
the number of active constituents applied were spring pruning thor-
oughness (0.180) and susceptibility to non-V6-virulent strains of
the pathogen (0.152). Susceptibility to V6-virulent strains of the
pathogen (0.087), network centrality of non-R6-cultivars during the
June–July transition (0.071), network centrality of non-R6-cultivars
during the May–June transition (0.063), and the initial strain of
the pathogen detected (0.032) had varying importance (Table 1).
The variables related to pesticide use intensity and annual costs in
the generalized random forest were interrelated and correlated to
varying degrees with the response variables (Fig. 3).

The estimated CATE calculated by the covariate subgroups con-
firmed the differences observed in the CATE distributions (Table
4). The number of active constituents applied and their associated
costs depended on multiple factors. When the most thorough prun-
ing was applied (ordinal value = 1), growers applied 6.79 fewer
active constituents in response to powdery mildew that resulted in

$81.73 lower costs than when more than 80% of plants had green
leaves and shoots remaining (ordinal value = 5). The initial strain
of P. macularis also impacted pesticide use intensity and cost differ-
entials in yards with or without powdery mildew. Hop yards with
a strain that was non-V6-virulent applied fewer additional active
constituents (0.08; 95% CI [–57.05 to 57.2]) and incurred lesser
additional costs ($175.87; 95% CI [$–1,673.29 to $2,025.03]) in re-
sponse to powdery mildew occurrence compared with yards where
the initial strain was V6-virulent (16.92; 95% CI [6.7 to 27.15] active
constituents; $766.15 [$–691.53 to $2,223.85] in annual costs).

There was also a large degree of heterogeneity in the CATE for
pesticide use intensity and annual costs that depended on the specific
grower, indicating that individual growers varied their management
to much different degrees in response to the occurrence of pow-
dery mildew. The estimated CATE for annual costs ranged from
$–1,093.72 (95% CI [$–3,126.28 to $938.85]) with Grower 3 to
$2,407.88 (95% CI [$1,213.4 to $3,602.37]) with Grower 8, largely
mirroring heterogeneity in their associated pesticide use (Table 4).

The seasonal differences in the CATE from 2014 to 2017 indicate
that growers’ management became more sensitive to whether pow-
dery mildew was present or not (Table 4). In 2014, the differential
in pesticide active constituents in yards with or without powdery
mildew was 8.82 (95% CI [–16.28 to 33.93]), but this differential
was 18.13 (95% CI [8.1 to 28.16]) in 2017 (Table 4). Correspond-
ingly, the CATE for annual costs for pesticides increased from
$112.80 (95% CI [$–1,134.62 to $1,360.24]) in 2014 to $882.46
(95% CI [$–595.94 to $2,360.88]) in 2017.

Fig. 2. Violin plots summarizing the distribution of A and B, monthly or C and D, annual costs of pesticides and the number of pesticide active constituents applied
for suppression of powdery mildew by Oregon hop growers from 2014 to 2017.
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Next, we explored the distribution of predicted treatment effects
for the out-of-bag samples generated from the causal forest for
covariates with the greatest feature importance, spring pruning thor-
oughness, and cultivar susceptibility to non-V6-virulent strains of
P. macularis (Fig. 4). The central tendency of the predicted treat-
ment effects for spring pruning thoroughness were qualitatively
similar for annual costs (Fig. 4A). However, the distribution of the
number of active constituents applied was more variable, and likely
to be larger, in response to the occurrence of powdery mildew as
the thoroughness of pruning diminished from a rating of an or-
dinal value of 1 to 5 (Fig. 4B). The susceptibility of a cultivar
to non-V6-virulent strains of P. macularis had more divergence
on the predicted number of active constituents that were applied
when powdery mildew was present (Fig. 4D). In cultivars resistant
to these strains, growers incurred lesser costs and applied fewer
fungicides in response to powdery mildew as compared with more
susceptible cultivars. For cultivars rated as having powdery mildew
susceptibility of 1 to 4, the annual costs they incurred in response to
powdery mildew were generally similar (Fig. 4C), whereas the num-
ber of active constituents applied tended to decrease with increasing
susceptibility (Fig. 4D). That is, growers applied more expensive
fungicides, but not necessarily more total active constituents, in cul-

tivars more susceptible to non-V6-virulent strains of the pathogen
when powdery mildew was detected. Predicted treatment effects for
other variables are given in Supplementary Figure S2.

Covariate balancing and exposure-response function
Figure 5 summarizes the covariate balance test, which shows the

absolute correlations for each covariate in the original unadjusted
data set (blue line) and the matched data set (orange line). The
median absolute correlation was 0.153 after weighting by the gen-
eralized propensity score, only slightly above the nominal threshold

TABLE 3. Montiel-Pflueger robust weak instrument test for the annual cost
model and the active constituents modela

Statistic Annual cost Active constituents

Effective F statistic 50.080 38.404
% of worst-case bias TSLS LIML TSLS LIML
τ = 5% 37.418 37.418 37.418 37.418
τ = 10% 23.109 23.109 23.109 23.109

a TSLS: two-stage least square. LIML: limited information maximum likeli-
hood.

Fig. 3. Spearman’s rank correlation coeffi-
cient matrix of selected important variables
related to the number of active constituents
applied for management of hop powdery
mildew and the annual cost of pesticides.

TABLE 2. Predictive accuracy of selected machine learning regression models used to estimate the number of active constituents applied by hop growers in Oregon
for powdery mildew (caused by Podosphaera macularis) and the annual cost of those active constituentsa

Annual cost Active constituents

Model MAE MSE RMSE
R2 training

data
R2 test

data
Cross-

validation MAE MSE RMSE
R2 training

data
R2 test

data
Cross-

validation

Ridge regression 199.47 263,037.2 512.87 0.42 –3.36 –1.47 1.54 4.99 2.23 0.89 0.36 0.53
LASSO regression 176.66 68,648.89 262.01 0.56 –0.14 –1.34 2.00 6.74 2.60 0.29 0.13 –0.05
Decision tree regression 204.49 78,739.20 280.61 0.78 –0.31 0.01 1.67 6.52 2.55 0.95 0.16 0.42
Random forest regression 166.28 52,766.63 229.71 0.72 0.13 0.24 1.41 3.79 1.95 0.91 0.51 0.64

a MAE is mean absolute error, MSE is mean squared error, RMSE is root mean squared error, and R2 is the coefficient of determination.
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value of 0.1 used to indicate that the confounding effect of the co-
variates is small (Zhu et al. 2015). We were unable to remove fully
covariate imbalances for initial strain, susceptibility to V6 strains,
and grower. Despite the imbalance in these specific covariates, the
entire data set passed the covariate balance test (Fig. 5). The gen-
eralized propensity score densities for instances where powdery
mildew was detected or not detected had their respective masses in
overlapping regions (Fig. 6). Therefore, we verified the assumption
of overlapping regions for the exposure-response function.

After assumptions of covariate balance and overlap were satis-
fied, we fit exposure-response function models for the annual costs
of pesticides and the number of pesticide active constituents. A lin-
ear exposure-response relationship provided a good description of
the average outcome value for the exposure level, with y = 392 +
1,088.6xi for annual cost and y = 6.6 + 2.23xi for the number of
pesticide active constituents, where xi is mean seasonal disease inci-
dence. Therefore, growers’ pesticide use and their associated costs
scaled linearly with the incidence of powdery mildew.

Discussion
This research makes several contributions. We have identified co-

variates that predict and explain the number of active constituents

applied and its economic costs for powdery mildew management
among Oregon hop growers and causes of the observed heterogene-
ity. These factors include the cultural practice of spring pruning,
cultivar susceptibility to two pathogenic races of P. macularis,
position in the landscape, and centrality in the disease-spreading
network. These factors collectively influence the incidence of pow-
dery mildew, which has a direct exposure-response relationship
to how growers respond in the overall number of pesticide ap-
plications they make and the annual costs of the pesticides they
apply.

We were chiefly motivated to identify production practices and
factors that explain why some growers may apply more or less
pesticides than average and, in turn, incur varying costs. There is
increasing scrutiny of the environmental and human health impacts
of agriculture in general and pesticide use in particular (Verweij
et al. 2009) and explicit policy objectives to reduce pesticide use
(Donley 2019; Lamichhane et al. 2016; Skevas et al. 2013). It is of
interest to note the timing of when pesticides were applied for pow-
dery mildew and the seasonality of their costs. Growers applied the
most pesticide active constituents during May and June, but months
shouldering this period received notably fewer active constituents
(Fig. 2). The seasonality of pesticide use largely reflects the devel-
opment of the crop. Hop shoots begin to emerge following the boreal

TABLE 4. Conditional average treatment effect (CATE) estimated by subgroups for important variables used in generalized random forest models for predicting the
number of pesticide active constituents applied for suppression of powdery mildew and the annual costs incurred by Oregon hop growers during 2014 to 2017a

Annual cost (USD/ha) Active constituents

Variables CATE (95% CI) F statistic P value CATE (95% CI) F statistic P value

Pruning thoroughness
1 471.22 (–184.39–1,126.83) 1.77 0.18 15.2 (8.49–21.91) 26.92 <0.001
2 –15.47 (–996.49–965.53) 15.07 (6.59–23.54)
3 1,018.78 (–909.65–2,947.21) 17.59 (5.14–30.03)
4 1,371.96 (–476.83–3,220.76) 2.86 (–10.64–16.37)
5 552.95 (–133.02–1,238.93) 21.99 (1.12–42.86)

Susceptibility to V6 strains
0 2,183.03 (694.09–3,672.07) 29.27 <0.001 27.51 (15.55–39.48) 62.89 <0.001
1 317.49 (–286.71–921.69) 18.42 (11.25–25.58)
2 836.27 (–932.54–2,605.1) 21.9 (4.68–39.12)
3 577.23 (–41.26–1,195.74) 17.73 (10.07–25.39)
4 659.97 (–613.56–1,933.51) 10.19 (–7.5–27.87)
5 –1,356.82 (–9,491.92–6,778.28) 21.95 (–28.19–72.09)

Susceptibility to non-V6 strains
0 576.56 (–420.82–1,573.96) 5.84 0.01 13.08 (5.7–20.47) 75.15 <0.001
1 373.67 (–226.83–974.18) 18.46 (11.22–25.7)
2 1,187.12 (–612.39–2,986.62) 20.21 (–3.52–43.95)
3 577.23 (–41.26–1,195.74) 17.73 (10.07–25.39)
4 914.76 (–1,627.76–3,457.28) 14.98 (–22.93–52.89)

Initial strain
Non-V6-virulent 175.87 (–1,673.29–2,025.03) 0.08 (–57.05–57.2)
V6-virulent 766.15 (–691.53–2,223.85) 16.92 (6.7–27.15)

Quadrant
Northeast 916.02 (–1,232.34–3,064.4) 75.08 <0.001 4.22 (–19.44–27.89) 129.95 <0.001
Northwest 624.85 (49.54–1,200.16) 15.2 (7.35–23.05)
Southeast 288.86 (–405.93–983.66) 24.4 (11.52–37.27)

Grower
1 456.83 (–406.23–1,319.92) 23.52 <0.001 26.59 (5.4–47.79) 44.27 <0.001
2 183.06 (–4,138.13–4,504.26) 1.96 (–45.01–48.94)
3 –1,093.72 (–3,126.28–938.85) 0.42 (–16.65–17.48)
4 829.69 (178.88–1,480.5) 19.13 (2.83–35.44)
5 2,159.56 (1,065.97–3,253.15) 7.29 (–6.07–20.65)
6 753.86 (–25.45–1,533.19) 25.9 (18.17–33.63)
7 76.29 (-654.89 – 807.48) 16.16 (10.11–22.21)
8 2,407.88 (1,213.4–3,602.37) 39.66 (24.93–54.39)
9 504.92 (–781.29–1,791.13) 3.14 (–9.15–15.44)

Year
2014 112.80 (–1,134.62–1,360.24) 107.7 <0.001 8.82 (–16.28–33.93) 32.60 <0.001
2015 1,016.6 (582.90–1,450.3) 21.11 (15.67–26.55)
2016 353.26 (–367.53–1,074.07) 15.9 (7.12–24.68)
2017 882.46 (–595.94–2,360.88) 18.13 (8.1–28.16)

a Conditional average treatment effect is the difference in response variables, annual cost, or the number of active constituents, conditional on whether a hop yard
had powdery mildew or not (the treatment variable) given a set of covariates. CI, confidence interval.
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winter dormancy in March to April and may grow rapidly (up to 15
cm per day) from emergence to bloom just after the summer solstice
(Neve 1991). Hop growth habit is determinate, and vertical devel-
opment of shoots and expansion of lateral branches largely ceases
at bloom. Bloom and the juvenile stages of cone development are
recognized as key periods for powdery mildew management (Gent
et al. 2017; Royle 1978), and it was somewhat surprising that pes-
ticide use tended to decline in July. This might reflect in part the
limited efficacy of fungicide applications made relatively late in the
season for reducing crop damage from powdery mildew (Gent et al.
2014, 2016). Whereas the number of active constituents applied in
July and August decrease, the costs growers incur did not, point-
ing to fewer but more expensive fungicides being used at this time.
This likely reflects the shift from sulfur-based fungicides to more
potent and expensive synthetic fungicides, as is common in hop
production because of considerations of organoleptic properties of
the harvested hops, efficacy, and side effects of sulfur on arthropod
pests (Nelson et al. 2015; Woods et al. 2012). Although pesticide
use and annual costs are closely correlated, different portions of
the cropping cycle could be considered when targeting strategic
reductions in pesticide use versus costs.

The causes of pesticide use intensity are multifaceted and related
to production practices that growers may have some control over
but also other factors that are impossible to alter, such as market
demand for certain cultivars or simply where yards are located. Our
analyses point to several potential strategies for reducing pesticide
use for powdery mildew on hop. The most important variable used
for splitting leaves in the causal forest was spring pruning thorough-
ness (Table 1). Thorough spring pruning has long been advocated
as a sanitation measure for reducing primary inoculum of P. macu-
laris and delaying epidemic onset (Gent et al. 2008, 2019b; Probst
et al. 2016; Royle 1978; Turechek et al. 2001). The novelty of the
current study was not in suggesting that thorough spring pruning is
important. Rather, we have explicitly linked pruning thoroughness
to pesticide use intensity and costs and estimated these effects. In
response to the presence of powdery mildew, growers generally in-
creased pesticide use intensity the most as the thoroughness of their
pruning diminished from the most to the least thorough categories.
These differences were reflected in the conditional average treat-
ment effects (Table 4) and demonstrate that growers who practice
the most thorough pruning apply on average the least number of
pesticide active constituents. The added costs of conducting more

Fig. 4. Predicted treatment effects estimated from a causal forest plotted as a violin plot for two variables identified as most important in splitting: A and B, spring
pruning thoroughness and C and D, susceptibility to non-V6-virulent strains of Podosphaera macularis. Annual costs per ha are presented in A and C, and pesticide
active constituents are presented in B and D.
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thorough spring pruning (Probst et al. 2016) are at least partially
offset by savings due to use of fewer active constituent and less
expensive ones.

Cultivar susceptibility to one of the dominant strains of P. macu-
laris in the region was the next most important variable identified in
the causal forest for pesticide use (Table 1). It is of interest to note
that cultivar susceptibility to non-V6-virulent strains of the fungus

Fig. 5. Covariate balance plot with covariates sorted in descending order accord-
ing to absolute correlation (imbalance) in the original data set. The gray vertical
line represents the median absolute correlation value for the matched data, and
the black vertical line is a nominal covariate balance threshold of 0.1. Absolute
correlations are between the exposure (mean seasonal disease incidence) and
observed pre-exposure covariates.

was a more important variable than susceptibility to V6-virulent
strains in the causal forest. These variables are closely related, as
susceptibility to each strain is similar or identical for most cul-
tivars with the exception of those that possess R6 (Wolfenbarger
et al. 2016), which were expressed as 0 on the ordinal scale for
disease susceptibility. Excluding this class of cultivars, the condi-
tional average treatment effects are qualitatively similar for both
pesticide active constituents and annual costs, indicating increas-
ingly extreme management responses by growers on all cultivars
having a non-zero level of susceptibility to either strain (Table 4).
Our data also indicate that growers apply the fewest active con-
stituents and incur the lowest costs in response to powdery mildew
on cultivars that are more resistant (ordinal values 0 or 1). How-
ever, growers appear to respond to the disease by applying different
mixtures or combinations of pesticide active constituents on cul-
tivars with varying levels of susceptibility. This is evidenced by
the approximately similar annual costs of pesticides applied, even
though the number of active constituents varied (Fig. 4C and D).
On moderately susceptible cultivars, growers tend to apply more
active constituents that cost less per unit but with the net effect
that this does not necessarily reduce their annual costs. A critical
examination of pesticide programs on cultivars with intermediate
susceptibility is warranted because the predicted costs of disease
management on these cultivars might be unnecessarily high relative
to more susceptible cultivars. We expected that cultivars with the
highest levels of resistance to powdery mildew would have substan-
tially smaller average treatment responses when powdery mildew is
present for both pesticide use and cost. However, our data suggest
that growers only marginally reduced spraying on such cultivars
when the disease was present. This again suggests potential for more
cultivar-specific management of powdery mildew that could reduce
pesticide use and costs. Lybbert et al. (2016) noted that winegrape
growers in California acted to minimize the risk of crop damage
from powdery mildew in unexpected ways in response to disease
forecasts. Certain winegrape growers applied a baseline level of
fungicides independent of forecasted disease risk but increasingly
applied mixtures of fungicides and more potent fungicides as fore-
casted disease risk increased. The present analysis suggests that hop
growers could have an analogous management goal of mitigating
the risk of powdery mildew on cultivars with partial or intermediate
levels of resistance. That is, on cultivars with intermediate levels,
growers may apply pesticides disproportionately relative to the risk
of crop damage.

Fig. 6. Generalized propensity scores
(GPS) based on the weighted covariates
for hop yards where powdery mildew
was not detected (W = 0) or was detected
(W = 1). The generalized propensity score
densities have the respective masses in
regions of overlap, indicating covariates
were successfully balanced.
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General position in the landscape and centrality in the disease
transmission network of hop yards also influenced pesticide use in
response to powdery mildew. These factors are correlates of overall
disease pressure, which we demonstrate has a linear relationship
with pesticide use through the exposure-response modeling. The
probability of disease transmission from a source yard, expressed
as edge weights in the network, is a product of pathogen source
strength, wind run, and distance to another yard (Gent et al. 2019a).
Of these factors, management intervention can reduce only source
strength. Source strength could be weakened by reducing the initial
inoculum or increasing pesticide use. Another possible means of
reducing source strength is strategic deployment of host resistance
in a subset of yards or farms whose characteristics and position in
the landscape would lead to high network centrality should disease
occur. Host diversification at multiple spatial scales has long been
recognized as a means of disease suppression for human, animal,
and plant diseases (Boudreau 2013; Burdon et al. 2014; Keeling
1999; Plantegenest et al. 2007; Rimbaud et al. 2021). Where host
resistance is most needed depends on contact structure in the early
stages of an epidemic (Jeger et al. 2007), which is determined
by dispersal characteristics of the pathogen, spatial arrangement
of the host and pathogen, and physical factors such as wind that
drive dispersal (Mikaberidze et al. 2016; Mundt and Brophy 1988).
When highly connected individuals are known, immunization or
deployment of host resistance is optimally targeted to these nodes
in scale-free networks (Jeger et al. 2007; Pastor-Satorras and
Vespignani 2002; Shaw and Pautasso 2014). Host resistance is
available in hop cultivars that is effective against the dominant
pathogenic races of P. macularis in the Western United States (Gent
et al. 2017; Wolfenbarger et al. 2014, 2016). Future studies are war-
ranted to understand where such resistance would be best placed
to have maximal impact on disease suppression and pesticide use
reduction.

Beyond the immediate applications to the motivating pathosys-
tem, our present study also serves as a case example of how sta-
tistical methods for causal inference can be better utilized in plant
disease epidemiology contexts. As experiments scale from local
scales, such as plots, to landscapes (Meentemeyer et al. 2012), many
of the methods we access herein are well developed and could serve
to move research from simple description and prediction to causal
inference.
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